C14	0.4471 (2)	0.3796 (3)	0.27334 (7)	0.0388 (4)	
C15	0.4104 (3)	0.4873 (4)	0.33683 (9)	0.0479 (5)	LI
C16	0.2348(3)	0.3800 (4)	0.36391 (7)	0.0449 (5)	ato
C17	0.2137(2)	0 1992 (3)	0 32745 (8)	0.0452 (5)	an
C18	0 5568 (3)	0.0840 (4)	0.33795 (10	0.0525(6)	A
C19	1 3937 (4)	0 2395 (5)	-0.01082(12)	0.0689(8)	In
C20	0 1855 (3)	0.3681 (2) 4)	0.43600 (8)	0.0548 (6)	21
C21	0.1035(3)	0.5001 (0.49000(0)) 0.0340 (0)	26
C21	0.2755(4)	0.5140 (5) 5)	0.46177 (11)	0.0737(9)	
C22	0.2108 (4)	0.7029 (5) 5)	0.43177(11)	0.0/2/(6)	
C23	0.0330(4)	0.0074 (3) 4)	0.40339 (12		-
C24	0.0411 (3)	0.4619 (4)	0.38802(8)	0.0516 (5)	R
						R/
Т	able 2. <i>Sele</i>	cted geom	etric i	parameters	s (Å. °)	Br
						5.
03-03		1.3/4 (2)	CII-	-C12	1.542 (3)	B.
O3-C19		1.411 (3)	C12-	-C13	1.520 (3)	D
017—C13	7	1.216 (2)	C13—	-C14	1.534 (3)	
C1—C2		1.392 (3)	C13-	- C 17	1.517 (2)	Βι
C1-C10		1.392 (3)	C13-	-C18	1.544 (3)	Du
C2—C3		1.375 (3)	C14—	-C15	1.538 (3)	D
C3—C4		1.388 (3)	C15-	-C16	1.529 (3)	_
C4—C5		1.395 (3)	C16-	-C17	1.494 (3)	<u> </u>
C5—C6		1.516 (3)	C16-	-C20	1.527 (2)	Ge
C5-C10		1.403 (3)	C16-	-C24	1.524 (3)	Ge
C6-C7		1 525 (3)	C20-	-C21	1 508 (4)	
C7_C8		1 527 (3)	C20_		1 488 (3)	Jo
		1.527(3) 1 542(2)	C21		1.400 (5)	
		1.5711(10)	C21-	C22	1.527(3)	14
$C_0 - C_{14}$		1.5211(15)	C22-	-C23	1.552 (4)	IVI
C9C10		1.521 (2)	C23-	-C24	1.303 (3)	
C9C11		1.537 (3)				Sh
C3-03-	-C19	117.51 (16)	C14—	-C13C17	100.48 (15)	
C2-C1-	-C10	123.0 (2)	C14—	-C13C18	113.44 (15)	Sh
C1C2	-C3	118.7 (2)	C17—	-C13C18	104.76 (14)	0.
O3-C3-	C2	124.29 (16)	C8—0	C14—C13	112.14 (15)	C .
O3-C3-	-C4	115.94 (17)	C80	C14—C15	120.51 (15)	Sp
C2-C3-	-C4	119.77 (18)	C13-	-C14C15	105.00 (15)	Sp
C3-C4-	-05	121 41 (19)	C14-	-C15C16	102.47 (18)	
C4_C5_	-6	118 31 (18)	C15_	-C16C17	107.82 (16)	Sp
C4	-C10	119 59 (17)	C15_	-C16C20	126.07 (18)	•
C6_C5_	-C10	122.04 (16)	C15	C16_C24	127.1 (2)	
C5_C6	-C10	122.04(10)	C17	C_{16} C_{29}	127.1(2) 1143(2)	
C3-C0-	-C/	110.92 (14)	C17	-C16-C20	114.3(2)	
$C_{1} = C_{1}$	-00	110.83 (10)	C1/-	-C10C24	58 40 (12)	
$C_{-}C_{-}C_{-}$	-09	108.83 (14)	C20-	-C10C24	58.40 (15)	
C = C = C = C = C = C = C = C = C = C =	-C14	113.70(16)	017-		126.51 (19)	
C9-C8-	-C14	108.02 (14)	01/-	-C1/C16	125.96 (16)	
C8-C9-	-C10	111.13 (15)	C13—	-C17C16	107.52 (15)	
C8-C9-	-C11	112.17 (15)	C16—	-C20C21	118.0 (2)	
C10-C9-	C11	113.47 (17)	C16–	-C20C24	60.70 (13)	A
C1-C10-	C5	117.46 (15)	C21—	-C20C24	108.1 (2)	
C1-C10-	—С9	121.43 (18)	C20-	-C21—C22	106.16 (19)	
C5-C10-	—С9	121.05 (16)	C21-	-C22C23	106.5 (3)	Т
C9-C11-	C12	113.20 (18)	C22—	-C23C24	105.5 (2)	
C11-C12	2—C13	109.91 (17)	C16-	-C24C20	60.90 (13)	D
C12-C17	3-C14	109.41 (15)	C16-	-C24-C23	118.5 (2)	_
C12-C13	3-C17	117.06 (14)	C20-	-C24-C23	109.05 (19)	
C12_C12	G_C18	111 34 (18)	C20	024 025	105.05 (17)	74
012-013	C10	111.54 (10)				23

The crystal used for the structure determination was unusually large, but by using an Ni β -filter instead of a monochromator on the diffractometer it was ensured that the homogeneous part of the incident X-ray beam was large enough to surround the crystal completely.

Data collection: ARGUS (Schreurs & Duisenberg, unpublished). Cell refinement: SET4 (de Boer & Duisenberg, 1984). Data reduction: HELENA (Spek, 1993). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELX76 (Sheldrick, 1976). Molecular graphics: ORTEP (Johnson, 1965). Software used to prepare material for publication: PLATON93 (Spek, 1990). User interface software: S (Spek, 1994).

We would like to thank Organon International BV for supplying the compound.

sts of structure factors, anisotropic displacement parameters, Hom coordinates, complete geometry, including H-atom geometry, d torsion angles have been deposited with the IUCr (Reference: B1170). Copies may be obtained through The Managing Editor, ternational Union of Crystallography, 5 Abbey Square, Chester CH1 IU, England.

eferences

- per, J. L. de & Duisenberg, A. J. M. (1984). Acta Cryst. A40, C-410. roess, A. I. A., Groen, M. B. & Hamersma, H. (1994). Tetrahedron Lett. 35, 335-338.
- usetta, B., Courseille, C., Geoffre, S. & Hospital, M. (1972). Acta Cryst. B28, 1349-1351.
- usetta, B. & Hospital, M. (1972). Acta Cryst. B28, 560-567.
- uax, W. L. (1972). Acta Cryst. B28, 1864–1871.
- uax, W. L. & Norton, D. A. (1975). Editors. Atlas of Steroid Structure, Vol. I. New York: Plenum.
- eerestein, V. J. van (1987). Acta Cryst. C43, 1206-1209.
- eerestein, V. J. van (1988). PhD thesis, Univ. of Utrecht, The Netherlands.
- hnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- cCandlish, L. E., Stout, G. H. & Andrews, L. C. (1975). Acta Cryst. A31, 245-249.
- neldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- neldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- bek, A. L. (1990). Acta Cryst. A46, C-34.
- pek, A. L. (1993). HELENA. Program for Data Reduction. Univ. of Utrecht, The Netherlands.
- bek, A. L. (1994). S. User Interface for Crystallographic Software. Univ. of Utrecht, The Netherlands.

cta Cryst. (1995). C51, 723-726

wo Antithrombotic Quinazolone erivatives

solt Böcskei and Kálmán Simon

Department of Chemical Research, Chinoin Pharmaceuticals, POB 110, 1325 Budapest, Hungary

László Örfi and József Kökösi

Institut for Pharmaceutical Chemistry, Semmelweis University of Medicine, Högyes E.u.9, 1092 Budapest, Hungary

(Received 23 February 1994; accepted 11 April 1994)

Abstract

The structures of two antithrombotic guinazolone derivatives, 1,2,3,5-tetrahydro-2-benzylimidazo[5,1-b]guinazolin-5-one, (I), and 3-benzyl-2-[1-(2,5-xylidino)- ethyl]quinazolin-4(3H)-one, (II), display significant differences in the bond lengths in one region of the quinazolone moiety.

Comment

The antithrombotic compounds (I) and (II) have been structurally characterized.

Compound (I) contains a new linear tricycle which has not been characterized previously, while compound (II) can be described as a substituted ring-opened analogue of (I). We have tried to consider the conforma-

Fig. 1. Structure of (I) showing 50% probability displacement ellipsoids.

Fig. 2. Structure of (II) showing 50% probability displacement ellipsoids.

tional consequences of the ring opening and the susbtitution. We can state clearly that there is a significant shortening of the bond lengths N6—C2, N6—C5 and N6—C7 in the tricyclic compound (I) as compared to the corresponding bond lengths (N3—C2, N3—C19 and N3—C4) of compound (II), which is probably a result of the ring closure in an open envelope conformation. N4 is 0.536 (2) Å above the plane of the remaining atoms of the tricycle. It is worth mentioning that no hydrogen bond was detected in the crystal structure of (II) although there are both potential hydrogen-bond acceptors and one potential hydrogen-bond donor in the molecule. This may be attributed to the N—H bond being sterically hindered by large neighbouring groups.

Experimental

Compounds (I) and (II) were synthesized by the methods described by Örfi, Kökösi, Hermecz, Kapui, Szabó & Szśz (1993).

Compound (I)

Crystal data

C₁₇H₁₅N₃O $M_r = 277.33$ Monoclinic $P2_1/c$ a = 7.423 (1) Å b = 20.540 (1) Å c = 9.1829 (7) Å $\beta = 101.448 (8)^{\circ}$ $V = 1372.3 (3) Å^{3}$ Z = 4 $D_x = 1.342 \text{ Mg m}^{-3}$

Data collection

AFC-6S diffractometer $\omega/2\theta$ scans Absorption correction: none 2959 measured reflections 2759 independent reflections 2209 observed reflections $[I > 2\sigma(I)]$ $R_{int} = 0.0159$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.0530$ $wR(F^2) = 0.1454$ S = 1.1672755 reflections 193 parameters Only H-atom U's refined $w = 1/[\sigma^2(F_o^2) + (0.0711P)^2 + 0.4583P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = -0.002$ Cu $K\alpha$ radiation $\lambda = 1.5418$ Å Cell parameters from 25 reflections $\theta = 48.08-49.88^{\circ}$ $\mu = 0.688 \text{ mm}^{-1}$ T = 293 (2) K Cubic $0.60 \times 0.55 \times 0.40 \text{ mm}$ Brownish

- $\theta_{\text{max}} = 75.08^{\circ}$ $h = -8 \rightarrow 9$ $k = -13 \rightarrow 25$ $l = -11 \rightarrow 11$ 3 standard reflections monitored every 150 reflections intensity decay: 1.73%
- $$\begin{split} &\Delta\rho_{\text{max}}=0.272 \text{ e } \text{\AA}^{-3}\\ &\Delta\rho_{\text{min}}=-0.293 \text{ e } \text{\AA}^{-3}\\ &\text{Extinction correction:}\\ &SHELXL93 \text{ (Sheldrick, 1993)}\\ &\text{Extinction coefficient:}\\ &0.0177 \text{ (13)}\\ &\text{Atomic scattering factors}\\ &\text{from International Tables}\\ &\text{for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)} \end{split}$$

Tabl	e	1.	Fra	ictio	nal	atomic	C	oordi	nates	and	equiva	lent
	i	sot	trop	ic di	spla	icement	p	aram	eters ((Ų) j	for (I)	

$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	v		z	U_{eq}
O21	0.2943 (3)	0.35395	(8)	0.3598 (2)	0.0755 (5)
N1	0.2728 (3)	0.51119	(8)	0.6324 (2)	0.0552 (4)
N4	0.2911 (2)	0.35880	(8)	0.8116 (2)	0.0539 (4)
N6	0.3062 (2)	0.39911	(7)	0.5868 (2)	0.0477 (4)
C2	0.3017 (3)	0.45209	(9)	0.6770 (2)	0.0470 (4)
C3	0.3354 (3)	0.42810	(10)	0.8331 (2)	0.0549 (5)
C5	0.3427 (3)	0.33938	(9)	0.6740 (2)	0.0549 (5)
C7	0.2833 (3)	0.40249	(10)	0.4345 (2)	0.0516 (5)
C8	0.2428 (3)	0.46858	(10)	0.3788 (2)	0.0504 (5)
C9	0.2048 (3)	0.48062	(13)	0.2262 (3)	0.0653 (6)
C10	0.1660 (3)	0.54229	(14)	0.1731 (3)	0.0743 (7)
C11	0.1673 (3)	0.59358	(13)	0.2724 (3)	0.0745 (7)
C12	0.2053 (3)	0.58303	(11)	0.4227 (3)	0.0677 (6)
C13	0.2416 (3)	0.52003	(10)	0.4792 (2)	0.0512 (5)
C14	0.3497 (3)	0.31534	àń	0.9388 (3)	0.0607 (6)
C15	0.5528 (3)	0.31133	(9)	1.0005 (2)	0.0516 (5)
C16	0.6631 (3)	0.26575	(10)	0.9477 (2)	0.0590 (5)
C17	0.8493 (3)	0.26273	(11)	1.0034 (3)	0.0632 (6)
C18	0.9292 (3)	0.30474	àń	1.1144 (3)	0.0608 (6)
C19	0.8230 (3)	0.35064	(10)	1.1682 (2)	0.0594 (6)
C20	0.6367 (3)	0.35366	(10)	1.1124 (2)	0.0561 (5)
Table	e 2. Selecte	d geometri	c para	meters (A	Å, °) <i>for</i> (I)
021-C7		1.223 (2)	C8C	13	1.404 (3)
N1C2		1.286 (2)	C9C	10	1.368 (3)
NI-C13		1.391 (3)	C10(211	1.392 (4)
N4-C5		1.447 (3)	C110	212	1.370 (4)
N4-C3		1.465 (3)	C12(213	1.400 (3)
N4-C14		1.466 (3)	C14-(215	1.504 (3)
N6-C2		1.372 (2)	C15-0	216	1.392 (3)
N6-C7		1.377 (3)	C15(220	1.395 (3)
N6-C5		1.460 (2)	C16(217	1.376 (3)
C2C3		1.489 (3)	C17(218	1.377 (3)
C7C8		1.461 (3)	C18	219	1.382 (3)
С8—С9		1.396 (3)	C19(220	1.378 (3)
C2-N1-	C13	115.4 (2)	C13(C8—C7	119.8 (2)
C5-N4-	C3	107.1 (2)	C10(C9C8	120.6 (2)
C5-N4-	C14	116.1 (2)	С9С	10C11	119.6 (2)
C3-N4-	C14	117.4 (2)	C12-0	C11-C10	120.9 (2)
C2-N6-	C7	124.1 (2)	C11-0	C12-C13	120.3 (2)
C2N6	C5	111.1 (2)	NI-C	13—C12	118.4 (2)
C7-N6-	C5	124.8 (2)	NI-C	13—C8	123.0 (2)
NI-C2-	-N6	125.4 (2)	C12(C13—C8	118.6 (2)

N1-C2-N6 125.4 (2) C12-C13-C8 N1-C2-C3 127.2 (2) N4-C14-C15 N6-C2-C3 107.4 (2) C16-C15-C20 N4-C3-C2 C16-C15-C14 101.6 (2) N4-C5-N6 C20-C15-C14 101.21 (15) O21---C7---N6 121.4 (2) C17-C16-C15 126.4 (2) C16-C17-C18 C17-C18-C19 N6---C7---C8 112.2 (2) C9-C8-C13 120.0 (2) C20---C19---C18 C9---C8---C7 120.2 (2) C19-C20-C15

Compound (II) Crystal data

C ₂₅ H ₂₅ N ₃ O
$M_r = 383.48$
Monoclinic
C2/c
a = 19.053 (6) Å
<i>b</i> = 11.451 (3) Å
<i>c</i> = 19.309 (3) Å
$\beta = 96.62 \ (2)^{\circ}$
$V = 4184.6 (19) \text{ Å}^3$
Z = 8
$D_x = 1.217 \text{ Mg m}^{-3}$

Cu $K\alpha$ radiation $\lambda = 1.5418$ Å Cell parameters from 25 reflections $\theta = 44.07-48.23^{\circ}$ $\mu = 0.590$ mm⁻¹ T = 293 (2) K Octahedral $0.50 \times 0.20 \times 0.20$ mm Pinkish

116.8 (2) 117.9 (2)

121.4 (2)

120.7 (2)

121.2 (2)

120.0 (2)

120.0 (2)

120.0 (2)

120.9 (2)

N3-C4

N3-C19

N12-C13

N12-C11

Data collection

Data concenton	
AFC-6S diffractometer	$\theta_{\rm max} = 75.38^{\circ}$
$\omega/2\theta$ scans	$h = -10 \rightarrow 23$
Absorption correction:	$k = -8 \rightarrow 14$
none	$l = -23 \rightarrow 22$
4257 measured reflections	3 standard reflections
4130 independent reflections	monitored every 150
2367 observed reflections	reflections
$[I > 2\sigma(I)]$	intensity decay: 2.24%
$R_{\rm int} = 0.1021$	
Refinement	
Refinement on F^2	$\Delta \rho_{\rm max} = 0.208 \ {\rm e} \ {\rm \AA}^{-3}$
$R[F^2 > 2\sigma(F^2)] = 0.0578$	$\Delta \rho_{\rm min} = -0.206 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.1641$	Extinction correction:
S = 1.123	SHELXL93 (Sheldrick,
4124 reflections	1993)
274 parameters	Extinction coefficient:
Only H-atom U's refined	0.0019 (2)
$w = 1/[\sigma^2(F_o^2) + (0.0892P)^2]$	Atomic scattering factors
+ 3.3572 <i>P</i>]	from International Tables
where $P = (F_o^2 + 2F_c^2)/3$	for Crystallography (1992,
$(\Delta/\sigma)_{\rm max} = 0.047$	Vol. C, Tables 4.2.6.8 and

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²) for (II)

6.1.1.4)

$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$							
	x	у	z	U_{eq}			
O26	0.73376 (13)	-0.2050 (2	2) 0.1235	i4 (14) 0.1015 (9)			
NI	0.89828 (12)	0.0228 (2	2) 0.1479	0.0587 (6)			
N3	0.78907 (12)	-0.0482 (2	2) 0.1779	0.0601 (6)			
N12	0.87928 (14)	0.2333 (2	2) 0.2105	58 (12) 0.0604 (6)			
C2	0.84495 (14)	0.0301 (2	0.1831	5 (13) 0.0552 (6)			
C4	0.7849 (2)	-0.1399 (3	3) 0.1296	(2) 0.0708 (8)			
C5	0.8449 (2)	-0.1481 (3	0.0890	0 (15) 0.0654 (7)			
C6	0.8472 (2)	-0.2364 (3	3) 0.0394	(2) 0.0866 (10)			
C7	0.9046 (2)	-0.2448 (3	0.0029	0.0897 (11)			
C8	0.9600 (2)	-0.1678 (0.0155	(2) 0.0846 (10)			
C9	0.9580 (2)	-0.0808 (3	3) 0.0632	(2) 0.0735 (8)			
C10	0.89979 (15)	-0.0689 (2	2) 0.1010	0.0597 (7)			
C11	0.84485 (15)	0.1308 (2	2) 0.2350	06 (13) 0.0573 (7)			
C13	0.85167 (14)	0.2954 (2	2) 0.1508	39 (13) 0.0524 (6)			
C14	0.8978 (2)	0.3671 (3	B) 0.1185	(2) 0.0676 (8)			
C15	0.8691 (2)	0.4367 (3	3) 0.0641	(2) 0.0857 (10)			
C16	0.7988 (2)	0.4375 (3	3) 0.0412	2 (2) 0.0832 (10)			
C17	0.7528 (2)	0.3648 (2	B) 0.0713	32 (14) 0.0657 (8)			
C18	0.78011 (15)	0.2938 (2	2) 0.1261	3 (13) 0.0565 (7)			
C19	0.7341 (2)	-0.0448 (3	3) 0.2261	2 (15) 0.0698 (8)			
C20	0.67592 (15)	0.0425 (3	3) 0.2082	23 (15) 0.0666 (8)			
C21	0.6423 (2)	0.0525 (3	s) 0.141(0.0771 (9)			
C22	0.5877 (2)	0.1303 (4	0.1261	(2) 0.0944 (11)			
C23	0.5667 (2)	0.2000 (5	i) 0.1769	0.1130(15)			
C24	0.5996 (2)	0.1905 (5	5) 0.2431	(3) 0.122 (2)			
C25	0.6536 (2)	0.1126 (4	0.2593	3 (2) 0.0952 (12)			
C27	0.8846 (2)	0.0940 (3	s) 0.3049	0.0790 (9)			
C28	0.9755 (2)	0.3695 (4	0.1425	5 (2) 0.1049 (13)			
C29	0.6751 (2)	0.3640 (3	3) 0.0461	(2) 0.0898 (11)			
Table 4. Selected geometric parameters (Å, °) for (II)							
O26—C4	:	1.221 (3)	C11-C27	1.527 (4)			
N1-C2		1.289 (3)	C13-C18	1.392 (4)			
N1-C10		1.389 (4)	C13-C14	1.403 (4)			
N3-C2	1	1.387 (3)	C14C15	1.380 (5)			

C14--C28

C15-C16

C16-C17

C17-C18

1.401 (4)

1.480 (4)

1.404 (3)

1.451 (3)

1.499 (5)

1.361 (5)

1.384 (4)

1.387 (4)

C₁₇H₁₅N₃O AND C₂₅H₂₅N₃O

C2-C11	1.528 (4)	C17—C29	1.504 (4)
C4C5	1.461 (4)	C19-C20	1.503 (4)
C5C10	1.384 (4)	C20-C25	1.377 (5)
C5C6	1.397 (4)	C20-C21	1.384 (4)
C6C7	1.371 (5)	C21-C22	1.374 (5)
C7—C8	1.375 (5)	C22—C23	1.360 (6)
C8-C9	1.366 (5)	C23-C24	1.362 (6)
C9-C10	1.398 (4)	C24—C25	1.370 (6)
C2N1C10	118.0 (2)	C27—C11—C2	109.5 (2)
C2-N3-C4	121.1 (2)	C18-C13-C14	119.6 (3)
C2-N3-C19	122.0 (2)	C18-C13-N12	122.4 (2)
C4-N3-C19	116.7 (2)	C14-C13-N12	117.9 (3)
C13-N12-C11	122.5 (2)	C15-C14-C13	117.6 (3)
N1-C2-N3	124.4 (3)	C15C14C28	121.1 (3)
N1-C2-C11	117.1 (2)	C13-C14-C28	121.4 (3)
N3-C2-C11	118.5 (2)	C16-C15-C14	122.7 (3)
O26-C4-N3	120.3 (3)	C15—C16—C17	120.4 (3)
O26-C4-C5	125.0 (3)	C16-C17-C18	118.2 (3)
N3-C4-C5	114.7 (3)	C16-C17-C29	121.0 (3)
C10-C5-C6	120.4 (3)	C18-C17-C29	120.8 (3)
C10-C5-C4	119.3 (3)	C17—C18—C13	121.4 (3)
C6-C5-C4	120.2 (3)	N3-C19-C20	115.5 (2)
C7—C6—C5	119.6 (3)	C25-C20-C21	118.4 (3)
C6—C7—C8	120.4 (3)	C25C20C19	120.2 (3)
C9-C8-C7	120.5 (3)	C21-C20-C19	121.3 (3)
C8C9C10	120.5 (3)	C22-C21-C20	120.5 (3)
C5-C10-N1	122.2 (3)	C23-C22-C21	120.6 (4)
C5-C10-C9	118.6 (3)	C22—C23—C24	119.2 (4)
N1-C10-C9	119.2 (3)	C23-C24-C25	121.2 (4)
N12-C11-C27	108.3 (2)	C24-C25-C20	120.1 (4)
N12-C11-C2	111.2 (2)		

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN PROCESS (Molecular Structure Corporation, 1992). Program(s) used to solve structures: SAPI91 (Fan, 1991) for (I); TEXSAN, SIR88 (Burla et al., 1989) for (II). For both compounds, program(s) used to refine structures: SHELXL93 (Sheldrick, 1993); software used to prepare material for publication: TEXSAN FINISH.

This work was financed from the grant OTKA No. 1009. Thanks are also due to Chinoin Pharmaceuticals for supporting the project with manpower and instrumentation.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: KA1084). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo, D. (1989). J. Appl. Cryst. 22, 398–303.
- Fan, H. F. (1991). SAPI91. Structure Analysis Programs with Intelligent Control. Rigaku Corporation, Tokyo, Japan.
- Molecular Structure Corporation (1992). TEXSAN. Crystal Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Örfi, L., Kökösi, J., Hermecz, I., Kapui, Z., Szabó, M. & Szász, Gy. (1993). Hung. Patent 208 975.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1995). C51, 726-729

1,2-Bis-crown-5-calix[4]arene

Gérard Pèpe and Jean-Pierre Astier

CRMC2-CNRS, Campus de Luminy, Case 913, 13288 Marseille Cedex 9, France

JACQUES ESTIENNE

Université de Provence, Centre de Saint-Jérôme, Laboratoire de Spectrométries et de Dynamique Moléculaire, Case 542, F-13397 Marseille, France

CHRISTOPHE BRESSOT, ZOUHAIR ASFARI AND JACOUES VICENS

EHICS, CNRS-URA 405, 1 rue Blaise Pascal, F-67008 Strasbourg, France

(Received 1 December 1993; accepted 1 September 1994)

Abstract

The title compound, 13,16,19,22,25,39,42,45,48,51decaoxahexacyclo[$35.15.1.1^{11,27}.0^{5,52}.0^{7,12}.0^{26,31}.0^{33,38}$]tetrapentaconta-1(52), 2, 4, 7(12), 8, 10, 26(31), 27, 29, -33(38),34,36-dodecaene, $C_{44}H_{52}O_{10}$, is a potent and selective alkali metal carrier. Two half-independent molecules are observed in the solid state and they have the 'pinched-cone' conformation of the studied calixarenes.

Comment

Calix[4]arenes (1) are cyclic oligomers made up from four phenol units which can be functionalized at either the 'upper rim', R (aromatic nuclei), or the 'lower rim', R' (phenolic OH groups).

The corresponding calixarene podands, calix crowns and calix spherands, are neutral ligands which are interesting as host molecules and because of their ability to act as selective alkali metal receptors and carriers (Vicens & Bhömer, 1991).

The macrocycle (2) was the first reported 'crowned' calixarene which exhibits a 1,3-functionalization with a polyetheral chain linking two opposite O atoms of *p*-*tert*-butylcalix[4]arene (Alfieri, Dradi, Pochini, Ungaro & Andreetti, 1983).